
NASA Technical Memorandum 108866

Simulation Model of the Integrated
Flight/PropulsionControlSystem,
Displays, and Propulsion System for
an ASTOVLLift-Fan Aircraft
William W. Y. Chung, Paul F. Borchers, and James A. Franklin
Ames Research Center, Moffett Field, California

April 1995

National Aeronautics and

Space Administration

Ames Research Center
Moffett Field, California 94035-1000





APP

ATM

CTO

FTM

HUD

IAS

IGV

LFI

MTV

RCS

SCAS

STOVL

TRC

V/STOL

WOW

(Xc

AM

AX

AZ

8A

5C

NOMENCLATURE

approach control mode

automatic transition control sub-mode

cruise/takeoff control mode

full thrust command control sub-mode

head-up display

indicated airspeed

inlet guide vane

lift-fan inlet

manual thrust vector control mode

reaction control system

stability and command augmentation system

short takeoff and vertical landing

translational rate command control mode

vertical or short takeoff and landing

weight on wheels

commanded angle of attack, radians

aerodynamic pitching moment that propulsion system counteracts, ft-lb

body x-axis force that SCAS commands, lb

body z-axis force that SCAS commands, lb

quickened flightpath angle for HUD, deg

aileron deflection, deg

canard deflection, deg
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cruise-nozzle deflection angle, deg

longitudinal deflection angle of the lift-fan nozzle, deg

lateral deflection angle of the lift-fan nozzle, deg

lift-nozzle deflection angle prior to yaw axis command additions, deg

left lift-nozzle deflection angle, deg

longitudinal stick deflection, inches

cruise-nozzle deflection angle that produces no pitching moment

reaction control system pitch thrust, lb

rudder deflection, deg

right lift-nozzle deflection angle, deg

reaction control system roll thrust, lb

throttle position, deg

reaction control system yaw thrust, lb

bank angle, radians

cruise-nozzle efficiency factor

lift-fan nozzle efficiency factor

lift-nozzle efficiency factor

net thrust vector angle, deg

commanded pitch attitude, radians

core (lift/cruise) engine bandwidth, rad/sec

mean aerodynamic chord, ft

pitching moment coefficient due to ground effect

.pitching moment coefficient at zero angle of attack
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pitching moment coefficient due to angle of attack, 1/rad

aerodynamic drag, lb

auxiliary inlet force in body axis x-direction, lb

auxiliary inlet force in body axis z-direction, Ib

cruise-nozzle force in body axis x-direction, lb

cruise-nozzle force in body axis z-direction, Ib

total propulsion system force in body axis x-direction, lb

total propulsion system force in body axis y-direction,, lb

total propulsion system force in body axis z-direction, Ib

lift-fan force in body axis, x-direction, lb

left lift-nozzle force in body axis, x-direction, lb

lift-nozzle force in body axis x-direction, lb

lift-nozzle force in body axis z-direction, lb

primary inlet force in body axis x-direction, lb

primary inlet force in body axis z-direction, lb
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acceleration due to gravity, ft/sec 2

vertical velocity, ft/sec

control system gain

augmentation ratio of the lift fan

distance from cruise nozzle to center of gravity, ft

aerodynamic lift, lb

cruise-nozzle moment arm, ft
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lift-fan moment arm, ft
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factor to modify jet-induced pitching moment, scaled to lift-fan thrust
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aircraft mass, slugs
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Simulation Model of the Integrated Flight/Propulsion Control System, Displays,

and Propulsion System for an ASTOVL Lift-Fan Aircraft

William W. Y. Chung, Paul F. Borchers, and James A. Franklin

Ames Research Center

SUMMARY

A simulation model has been developed for use in piloted evaluations of takeoff, transition,

hover, and landing characteristics of an advanced, short takeoff, vertical landing lift-fan fighter air-

craft. The flight/propulsion control system includes modes for several response types which are

coupled to the aircraft's aerodynamic and propulsion system effectors through a control selector tai-

lored to the lift-fan propulsion system. Head-up display modes for approach and hover, tailored to

their corresponding control modes are provided in the simulation. Propulsion system components

modeled include a remote lift fan and a lift/cruise engine. Their static performance and dynamic

response are represented by the model. A separate report describes the subsonic, power-off aerody-

namics and jet induced aerodynamics in hover and forward flight, including ground effects.

INTRODUC_ON

NASA Ames Research Center is participating in technology development for advanced short

takeoff vertical landing (ASTOVL) fighter aircraft as a member of the Advanced Research Projects

Agency (ARPA) ASTOVL program. Integration of flight and propulsion controls is one of the criti-

cal technologies being pursued in that program. NASA's role in the program is to participate in

developing design guidelines for integrated flight/propulsion controls, support ARPA technology

development for ASTOVL demonstrator aircraft, and provide consultation on integrated control

design to ARPA contractors. This work will be accomplished in a joint program with ARPA,

Department of Defense agencies, US and UK industry, and the UK Ministry of Defence. Specifi-

cally, NASA will carry out design guideline analyses for the control system and conduct piloted

simulations on the Ames Research Center Vertical Motion Simulator (VMS) to evaluate design

guidelines and to assess the merits of contending design approaches.

The initial effort in this program has been to develop a mathematical model for simulation of a

representative ASTOVL aircraft concept. This simulation development has followed the approach

employed in previous STOVL aircraft simulation models, an example of which is provided in refer-

ence 1. Representation of the aircraft's aerodynamic characteristics are presented in reference 2. This

report describes the aircraft's integrated flight/propulsion control system and head-up display and the

propulsion system performance and dynamic response. This simulation model has been used in an

experiment on the VMS to gain initial experience with control system behavior and flying qualities

for this aircraft concept.



Description of the Lift-Fan STOVL Aircraft

The lift-fan STOVL aircraft is a single-place, single-engine fighter/attack aircraft, shown in

figure 1, featuring a wing-canard arrangement with twin vertical tails. Geometric characteristics of

the configuration are summarized in table 1; mass properties are specified in table 2.

The propulsion system concept is presented in figure 2. It consists of a remote lift fan coupled to

a lift/cruise turbofan engine to permit continuous transfer of energy from the lift/cruise engine to the

lift fan. Further, the lift/cruise engine exhaust is either ducted aft to a thrust deflecting cruise nozzle

in conventional flight or diverted to two deflecting lift nozzles in vertical flight. Throughout transi-

tion, flow can be continuously transferred between the cruise and lift nozzles. Lift fan and lift-nozzle

thrust can be deflected downwards from 45 to 100 deg relative to the aircraft waterline. The cruise

nozzle can be deflected +_20 deg from the vertical.

The basic flight-control system consists of the canard, ailerons and twin rudders for aerodynamic

effectors during forward flight. For powered-lift operation, control is provided by differential thrust

transfer between the lift fan and lift nozzles, deflection of lift-fan and lift-nozzle thrust, and deflec-

tion of cruise-nozzle thrust. Pitch control is achieved by a combination of canard deflection, thrust

transfer between the lift fan and lift nozzles, and deflection of the cruise nozzle. Roll control is pro-

duced by the ailerons and differential thrust transfer between the lift nozzles. Yaw control is derived

from the combination of rudder deflection, differential lift-nozzle deflection, and lateral lift-fan

thrust deflection. As an option, reaction control, powered by engine compressor bleed air, can pro-

vide additional control moments through nozzles located in the wing extremities and in the tail.

Longitudinal acceleration is achieved through thrust transfer between the lift fan, lift nozzles and

cruise nozzles and by deflection of the lift-fan and lift-nozzle thrust. The integrated flight/propulsion

control system must coordinate all of these aerodynamic and propulsive control effectors so that,

from the pilot's perspective, the aircraft consistently responds to cockpit inceptor inputs, whether in

airbome or jetbome flight.

Integrated Flight/Propulsion Control System

The flight/propulsion control system model follows the structure shown in figure 3. It includes

the pilot's command inputs, the regulator that acts on the pilot's commands and sensed aircraft and

propulsion system state variables, and the control selector that couples these commands to the

appropriate aerodynamic or propulsion control effectors. The pilot's commands and regulator are

subdivided corresponding to pitch, roll, and yaw attitude controls, and vertical, longitudinal, and lat-

eral translational velocity controls. Within each of these, the different command modes shown in

table 3 may be obtained depending on the phase of flight and the pilot's task. Descriptions of these

modes follow, presented in order of increasing system complexity.

In the cruise/takeoff (CTO) mode, the pilot has direct control of the magnitude of the lift/cruise

engine thrust. The propulsive lift system is not in use, and the pilot has no direct control of the thrust
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vectorangle.Ratedampingaugmentationisprovidedfor pitchandroll control alongwith dutchroll
dampingandturn coordinationfor theyawaxis.

Themanualthrustvector(MTV) modeallowsthepilot to controlthemagnitudeof thepropul-
sionsystemthrust(lift-fan plus lift/cruiseenginethrust)aswell asthedirectionof thenet thrust
vector.No feedbackcontrolloopsareusedfor eitherspeedor flightpathcontrol.Pitchandroll are
controlledthroughratecommand/attitudeholdaugmentationin transition,blendingto attitude
command/attitudehold at low speed.Yawcontrolis thesameasfor CTO athigherairspeedsduring
transition,andthenblendsto yawratecommandat low speed.

Theapproach(APP)modeactivatesalongitudinalaccelerationcommand/velocityhold system,
with thenet thrustvectorangleasthespeedcontroleffector.In deceleratingfrom wingborneto
poweredlift flight, a flightpathcontrolsystemis activatedasthenetthrustvectorangleexceeds
70degandthecommandedcoreenginethrustexceeds70percentof its maximumvalue.This flight-
pathsystemremainsactivateduntil thenet thrustvectorangledecreasesbelow50deg.Theportion
of theAPPmodethatdoesnot useaflightpathcontrolleris calledfull thrustmode(FTM), asthe
pilot still hasdirectcontrol of thecruiseenginethrust,while thatportionthatusesa flightpathcon-
troller is calledautomatictransitionmode(ATM). Pitch,roll, andyawcontrol areidenticalto that
for MTV.

Lastly, thetranslationalratecommand(TRC)modeis reservedexclusivelyfor the low-speed
poweredlift andhoverflight regime.Propulsionsystemcontrolin thismodeconsistsof avertical
velocity andalongitudinalvelocity controlsystem.Thecontrolsystemusesroll attitudeto provide
thepilot with direct commandof lateralvelocity.Theyawaxiscontrolremainsthesameasthat for
MTV.

Controlmodeavailability is subjectto therestrictionsshownin figure 4. Assumingthelift fan
andits inlet/exhaustmechanicalcomponentshavea250knot airspeedoperational limit, CTO is the

only mode available for this and higher airspeeds. The pilot engages the lift fan by selecting MTV or

APP when the airspeed is between 250 and 150 knots; if the lift fan is not engaged by the time the

airspeed drops below 150 knots, then a landing in CTO mode is required, or the pilot must wave off

and start the approach again. TRC cannot be selected until the airspeed has dropped below 60 knots,

nor can TRC be used to command an airspeed greater than this value. Upon a landing following jet-

borne flight, the flight control mode automatically reverts to MTV, disengaging the vertical velocity

control system. It follows that MTV is the only fan-engaged mode used for vertical and short takeoff

as it provides the pilot with direct control of the thrust vector. The CTO mode can also be selected

while the aircraft is on the ground, allowing for conventional takeoff. The lift fan will be shut down

automatically in flight if the airspeed exceeds 250 knots; the pilot can manually disengage the lift fan

by selecting CTO mode, but this option is only available if the net thrust vector angle is directed

fully aft. This feature prevents the pilot from disengaging the lift fan while the fan is still providing

significant propulsive lift for the aircraft. Lastly, the MTV mode can be selected any time the lift fan

is engaged by depressing a button on the nozzle lever. This button disengages the clutch that back-

drives the thrust vector handle and allows the pilot to manually direct the thrust vector, providing a

rapid acceleration or waveoff capability.

J_
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Thematerialwhich follows first describesthepilot commandinputsandregulatorlawsfor each
of thesix control axes,andthenpresentsthecontrolselector.

Command and Regulator Models

Pitch control- The pitch attitude control modes for transition and hover are a direct application

of the state-rate feedback implicit-model following system that has been evaluated on a number of

V/STOL aircraft simulations at Ames Research Center, including the AV-8 Harrier and the E-7A

and Mixed Flow Vectored Thrust STOVL aircraft. Its structure is shown in figure 5. The pilot's

inputs come through the control stick and trim switch. Either attitude-command/attitude hold or rate-

command/attitude hold modes can be implemented, depending on whether the gain K 111 is zero or

not. Rate-command/attitude hold is blended to attitude-command/attitude hold below 70 knots by

ramping K 111 between its nominal value and zero over the speed range from 70 to 60 knots. Gain

K222 establishes control sensitivity for attitude command; K 111 serves the same purpose for the rate

command mode while K222 is used to adjust overshoot in pitch response. Proportional-plus-integral

control in the forward path is obtained from the positive feedback of the pitch command through the

first order lag defined by x9. The value of the lag time constant was set to approximate the lag of the

pitch control actuator. Gain KFB blends feedback variables between body angular rate and Euler axis

sensors depending on flap position (KFB = 0 flaps up; 1 flaps down).

The combination of angular acceleration feedback and proportional plus integral control pro-

duces a very robust system to variations in aircraft configuration and flight condition. Angular accel-

eration provides sufficient lead compensation to restore stability margins that are eroded by the

integral control, while still maintaining the closed-loop gain to achieve the specified control band-

width as well as good command tracking and disturbance rejection. As noted in table 4 only the final

forward loop gain (K300) is changed in proportion to variations in sensitivity of the control effectors

over the transition and hover envelope. Otherwise, the gains are virtually the same as those used for

the Harrier. Integrator limiting is imposed when the pitch control effectors reach the limit of their

effectiveness or are rate saturated. Attitude stabilization is synchronized and integral control is

removed when the aircraft is on the ground (wow on).

Roll control- Roll control modes are presented in figure 6. Rate-command/attitude hold or

attitude-command/attitude hold modes are produced with the same form of control laws as for pitch.

The control stick and trim switch provide the pilot's inputs, and the control gains and limiting logic

are completely analogous to those for pitch. As was the case for pitch control, rate-command/attitude

-hold is blended to attitude-command/attitude-hold, in this case by ramping K333 from its nominal

value to zero over the speed range from 50 to 40 knots. Gain K 1 establishes control sensitivity for

attitude command; K333 serves this purpose for the rate command mode while K1 is used to adjust

overshoot in pitch response. Lateral velocity control is accomplished through appropriate commands

to the roll control. Switch C in figure 6 is activated by mode control to select either roll command or

lateral velocity command through the control stick for hover operations. Gain K6 sets the control

sensitivity, K_2, K9, and the equalization transfer function provide the desired control bandwidth and
associated roll response to the pilot's velocity command inputs. The forward loop gain K3 is adjusted

in proportion to variation in control sensitivity. Proportional-plus-integral control were achieved as

for the pitch control with the positive feedback of the lagged roll control command, where x8

approximates the roll control actuator lag. Again, KFB blends body angular rate and Euler axis
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feedbacksdependingon flap position.Attitudestabilizationandintegralcontrolareremovedon the
ground.

Yaw control- Yaw control modes (fig. 7) provide sideslip command during transition and blend

to yaw rate command at low speed and in hover. The gain KB provides a linear blend between the

two modes over the speed range from 50 to 40 knots. The yaw control command is produced by the

difference between the commanded yaw acceleration and the yaw acceleration produced by the basic

aircraft's yaw response characteristics. In forward flight the commanded acceleration is produced by

a second order dutch roll model derived from measured sideslip and sideslip rate, where the sideslip

feedback gain is chosen to set dutch roll frequency and the sideslip rate gain establishes dutch roll

damping. During low speed and hover, the same state-rate feedback structure as employed for pitch

and roll control is used for yaw rate command, including angular acceleration feedback and propor-

tional plus integral feed forward. Feedback of sideslip, roll rate, yaw rate, and lateral control posi-

tion, in conjunction with the model of the known nonlinear directional aerodynamic characteristics,

define the contribution of the basic aircraft to yaw acceleration.

Flightpath and velocity control- The flightpath and velocity control modes use a combination

of the state-rate feedback concept along with the nonlinear-inverse system design which has been

investigated in flight on the NASA Quiet Short Haul Research Aircraft (QSRA) (ref. 3) and several

STOVL flight simulations which include the E-7A (ref. 4) and Mixed Flow Vectored Thrust STOVL

aircraft (ref. 5). The same design method also has been investigated in the E-7D flight simulation

(ref. 6) which included a detailed component level propulsion system. The state-rate feedback por-

tion of the flightpath and velocity control is used to generate acceleration commands to the nonlinear

inverse system when an advanced augmentation mode, i.e., APP or TRC, is engaged.

The flightpath angle or vertical velocity command (fig. 8) is controlled by the throttle. This

command input, in combination with the vertical velocity and normal acceleration feedbacks, pro-

duces the vertical acceleration command, _.cmd- The implicit proportional-plus-integral feed forward

is employed in the forward loop to achieve good model following response and noise rejection. None

of the gains vary throughout transition or in hover. The velocity Vx is ground speed along track and

is used to convert the pilot's flightpath angle command to an equivalent vertical velocity command.

For groundspeeds below 60 knots, this velocity is frozen at the 60-knot value to convert the pilot's

command from flightpath angle to vertical velocity as is appropriate for hover and low speed flight.

Switch G is closed when either APP or TRC is engaged. ATM in the acceleration feedback path is a

second order transfer function with a damping ratio of 0.707 and a natural frequency of 5 rad/sec to

provide a smooth transition when either flightpath command loop or vertical speed command loop is

engaged. Switch F is closed in TRC to allow an altitude hold response for precision hover. When it

is engaged, the reference altitude hprim e is synchronized with the measured radar altitude until the

pilot's vertical velocity command is centered, at which time the reference altitude is held at the past

value.

The longitudinal velocity control shown in figure 9 produces axial acceleration commands, Xcm d,

with a control structure similar to that for vertical velocity. During transition between forward flight

and hover, the pilot commands the longitudinal acceleration using a thumbwheel on the control stick.

This mode is selected by engaging APP mode, Switch E. Longitudinal acceleration and groundspeed

combine with the pilot's commands and proportional-plus-integral feed forward to complete the

,)

5



implicit stateratefeedbackmodelfollowing design.All thegainsin thiscontrolloopremaincon-
stant.For precisionhover,thethumbwheelis switchedout in TRCmode,SwitchF, andthecontrol
stickprovideslongitudinalvelocity commands.In thismode,thestickis disconnectedfrom thepitch
attitudecommandsystem.While mostof thehovermaneuveringis performedataconstantpitch
attitude,attitudechangescanbemadethroughuseof thetrim switchshownin
figure 5.

In CTO mode,thethrottledirectly controlsthecoreengine'sRPM andtotal thrustmagnitude,
figure 8. In MTV, anozzlelevercontroller is used to control the thrust vector angle. The total thrust

command, which is set by the throttle, and the thrust vector angle command, which is set by the noz-

zle lever, are sent to the thrust management system to calculate each nozzle thrust command and
deflection.

When either APP or TRC is engaged, the commands for thrust and deflection of each nozzle are

derived from longitudinal acceleration command, Xcmd, vertical acceleration command, Z'cmd, (both

in flightpath inertia axes), and pitch acceleration command, dlcmd. To convert these acceleration

commands to each nozzle's thrust and deflection commands, the axial and vertical components of

the required total thrust from the propulsion system are calculated. These forces, AX and AZ, are cal-

culated based on the aerodynamic lift and drag forces, aircraft attitudes, inlet forces, weight of the

aircraft, and translational acceleration commands (eqs. 1 and 2).

zSX=mXcmdCOS 0s-m_.cmdsin0s +Dcos_c-Lsino_cCOS _+Wsin0s-FpIx-FAIX (1)

m_cm d sin 0s + mZcmd cos 0s + D sin O_c- W cos 0s

AZ = cos _) + L cos (Xc -FpIz -FAIZ (2)

APP has two sub-modes, the full thrust mode (FI'M) and the automatic thrust mode (ATM). In

APP/FTM, throttle commands total thrust and thumb-wheel commands flightpath acceleration com-

mand, Xcm d. In APP/ATM, the throttle controller is converted to flightpath command, ]tcmd, at

speeds higher than 60 knots, and to vertical velocity command, lacmd, at speeds lower than 60 knots.

The switch from APP/FTM to APP/ATM occurs when the thrust vector angle is greater than 70 deg

and the throttle setting is greater than 60 percent. Reversion APP/ATM to APP/FTM occurs when

the thrust vector angle is less than 50 deg and is independent to the throttle setting.

Since in APP/FTM, pilot controls Xcm d with the thumbwheel controller, and altitude with pitch

attitude, the vertical acceleration command, _ cmd, anc_ the output of the first order filter, with the

time constant of XCNT in figure 8, in the vertical acceleration command loop, are all set to zero. 2 cmd

and the output of the first order filter are initialized to the flightpath angle command, _/cmd, at the

time when transitioning from APP/FTM to APP/ATM as shown in equation 3.

AX - m Xcmd COS 0s - D cos _ + L sin Otc cos (_- W sin 0s + FpIX + FAIX

7'cmd = - m sin 0 s (3)

Os, in equation 1, is the pitch attitude command from the attitude command loop in flightpath

command mode, and is controlled by the longitudinal stick, 81ong, and the pitch trim switch. In
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flightpathcommandmode,pitch responseis decoupledfrom theflightpathcommandandlongitudi-
nal speedcommand.To providethecapabilityof controlling longitudinalspeedwith pitch attitudein
APPmode,theflightpathcommandandspeedcontrolloopshaveto bedisabled.This is doneby dis-
connecting (Is from pitch attitude control, 8long, when the longitudinal speed control, i.e., thumb-

wheel, is in detent and ground speed is less than 60 knots. This effectively converts Rcm d and Y'cmd

from the inertia coordinate system to an axes system following the body axis with an angle defined

by 0s. As a consequence, the pitch and speed coupling is introduced. The input from the pitch trim

rate switch to 0s remains active to give pilot control over this new axes system with respect to the

body axes as well as the pitch attitude in this control configuration. The flightpath command and

speed control mode is restored whenever pilot roils the thumb-wheel out of detent.

The throttle controller commands total thrust magnitude in CTO, MTV, and APP/FTM. In

APP/ATM, the throttle commands _/cmd when ground speed is greater than 60 knots, and l_cmd when

speed is less than 60 knots. In TRC, the throttle controls ficmd" At control mode switching, the new

control sensitivity is bounded by an upper scaling slope and a lower scaling slope, figure 10, to pre-

vent any unreasonable control sensitivity change due to the mode switch. This bounded envelope

reflects a reasonable match between the physical throttle position and the thrust command, 7cmd, and

l_cmd. To minimize any transient response during the throttle control's reconfiguration, the throttle
control command is scaled to match the new control command state at the mode switch. Thus, if

mode switching occurs within the bounded slopes at a steady flight condition, no transient response

is introduced. The scaling logic is performed as follows:

At the mode switch, if the throttle position is greater than (Sth)ref, an upper throttle command

scaling slope, Slopeu, is calculated based on the current throttle position, 8th, and the maximum

throttle travel, (Sth)max, the maximum command authority, (_cmd)max, and the current state of the

new throttle control parameter, 8, which is the thrust magnitude for the thrust command mode,

flightpath angle for 7cmd mode, or the vertical velocity for the hcm d mode.

(_cmd) max - 8

Slopeu = (_ilh)max - _th (4)

where 8cmd is: Tcm d in CTO, MTV, and APP/FTM

]tcm d in APP/ATM and Vx -> 60 knots

flcm d in Vx < 60 knots

This slope is bounded by the shaded area as shown in figure 10. The lower slope for 8th < (Sth)ref,

SlopeL, is defined by equation 5 and 6.

(_cind)ref = (Scmd)max - Slopeu x[ (_h)max - (_lh) ref ] (5)

(Scrod) ref - (Scrod) min

SlOpeL = (81h)ref
(6)
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The _cmd is then calculated as follows:

_cmd = (_cmd)re f ÷ Sl°peu × [(_th)ma x - (Sth)ref]

_cmd = (Scmd)min + Sl°peL × 8th

_ith -> (_th)ref

_th < (_th)re f

(7)

The throttle controller is scaled from 0 to 100 percent travel, i.e., (_th)max = 100.0, and the

maximum and minimum _cmd, and the slopes are listed in table 5. The maximum and minimum

slopes are selected to generate the reasonable mode switching transient response and logical throttle

position for this experiment.

Thrust Management System

The flight control mode selected by the pilot determines the logic that allocates the core engine

thrust to the nozzles and determines the engine nozzle deflection angles. The method used for the

CTO mode, MTV mode, and the FTM portion of the APP mode will be presented first, followed by

the method for the ATM portion of the APP mode and the TRC mode. The solutions for the propul-

sion effectors will satisfy either net thrust and thrust vector angle commands or vertical velocity and

longitudinal acceleration commands. The control selector superimposes additional commands on

those thrusts and deflections that the propulsion control system determines; these commands satisfy

the pitch, roll and yaw SCAS, and will be discussed in detail in a later section of the paper. The

response of the propulsion system to the final thrust commands will be discussed after the control

selector.

In the CTO, MTV, and FTM portion of the APP mode, the pilot has direct control of the core

engine thrust. In the CTO and MTV modes, the pilot directly controls the net thrust vector angle,

while a longitudinal acceleration command/velocity hold loop commands this effector in the APP

mode. With these control features in mind, the logic for determining the allocation of thrust to the

cruise nozzle, lift nozzles and lift fan can be broken down into three basic cases once the lift fan is

operative. The first propulsion system solutions that follow apply to those instances when the lift fan

is inoperative, or when the commanded net thrust vector angle is less than or equal to zero deg,

where the positive net thrust deflection angle is measured downward from the waterline of the air-

craft. Figure 11 shows the convention for the nozzle deflection angles and the measurement of noz-

zle distances from the center of gravity. The net lift-fan thrust (TLF 1 ) and the net lift-nozzle thrust

(TLN1) are set equal to zero, and the longitudinal deflection angles of the lift fan and the lift nozzles

are set to their maximum deflection values, that is, the deflection angle that directs the thrust of these

nozzles as far aft as possible. The core engine thrust commanded by the pilot is TTCMD. The basic

thrust equation for the aircraft, regardless of control mode, is:

TLF1 TCN1 TLN1

KAUG TILF + _ + TILN - TTCMD (8)

In this equation, rlLF, TILN, and rlcN are the efficiency factors of the lift fan, the lift nozzles and the

cruise nozzle, respectively, and KAU G is the lift-fan augmentation ratio. For the case in which the



pilot hasmanualcontrolof the core engine thrust, the net cruise-nozzle thrust TCN 1 is simply

TTCMD minus the core engine thrust that provides minimal lift-fan and lift-nozzle thrust, multiplied
by rlCN. The cruise-nozzle deflection angle, _SCr,i,is determined following the engine nozzle moment

arm calculations. The lift-fan pitch moment arm and the lift-nozzle moment arm are calculated from

the respective nozzle deflections, _SLFx and _LN, and the distances of these nozzles from the center of
gravity of the aircraft:

LLF = XLF cos 8LF x + ZLF sin 8LF x (9)

LLN = - XLN cos 5LN - ZLN sin _LN (10)

For this aircraft, equations 9 and 10 will always produce positive values for LLF and LLN. The

cruise-nozzle deflection angle for which cruise-nozzle thrust does not produce a pitching moment on

the aircraft, 8neu, is calculated:

8neu = -tan-l(zC------N-N/

\XCN J
(11)

The distance from the cruise nozzle to the aircraft center of gravity (1CN)is _(zCN)2 + (xCN)2.

Longitudinal cruise-nozzle deflection is used to counteract the aerodynamic pitching moment, AM,

as shown in equation 12:

sin-l[, -AM - (TLF1)LLF + (TLN1)LLN
8CN

L (TcNI)ICN

+ 5ne u (12)

where: AM = (Cma (z + Cm(3E KGE + Cmo ) _S_-

Cma is the variation in pitching moment due to angle of attack

CraG E is the variation in pitching moment due to ground effect

KGE varies ground effect as a function of altitude

Cmo is the pitching moment coefficient at zero angle of attack

The next case is applicable when the lift fan is engaged and the commanded net thrust vector

angle is less than 45 deg. Table 6 shows the status of the propulsion system parameters for each

group of solutions that follow for the MTV mode and the APP/FTM submode. As before, the lift-fan

and lift-nozzle deflection angle are assumed to be at their maximum (aft) deflection, and the lift-

nozzle thrust is set to zero. The propulsion system pitching moment equation can be written in terms

of the nozzle thrusts and the vertical thrust component of the cruise nozzle, FCNz:
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(TLF 1) LLF - (FCNz) xCN = - AM + (TLN1) LLN (13)

Using TCN 1 as an approximation for the longitudinal component of the cruise-nozzle thrust, the

net thrust deflection angle ON can be expressed in terms of the ratio of vertical thrust to longitudinal
thrust:

tan_l( TLF 1COS 8LF x - FCN z ]

_ si--n_ +TCN------_ A ON (14)

Equation 14 can be rewritten as:

TLF 1 [cos 5LF x - (tan ON) sin 8LFx] - TCI,,I1(tan ON) - FCN z = 0 (15)

As TLN 1 is set to zero and TTCMD, ON, and 5LF x are known quantities, equations 13, 14, and 16

can be solved for TLF 1, TCN 1 and FCN z. FCN z and TCN 1 determine the cruise-nozzle deflection
angle:

-I(-FCNz
_SCN=sin _,_)

(16)

Equations 8, 13, 15, and 16 are used to determine TLF1, TCN1, and FCN until the cruise-nozzle
Z

deflection angle reaches its maximum (thrust directed downward) value. At this point, the hft-fan

and lift-nozzle deflection angles are still set to their maximum value, and a different set of equations

are used to determine the cruise-nozzle, lift-fan, and lift-nozzle thrusts. The thrust equation (eq. 8) is

still applicable; none of the component thrusts are set to zero. With the cruise nozzle at its maximum

deflection, the moment arm for the cruise nozzle is determined by:

LCN =- XcN sin 8CN -zCN cos 3CN (17)

The moment arms for the lift fan and the lift nozzles are determined with equations 9 and 10, with

the nozzle deflection angles set to their maximum values. The pitching moment contributions of each

nozzle appear in equation 18:

(TLF 1) LLF - (TLN1) LLN + (TcN 1 ) LCN = - AM (18)

As in equation 15, the net thrust deflection angle can be expressed in terms of the nozzle thrusts.

This equation incorporates the last known propulsion system parameter, the pilot's commanded

value of ON:

TLF 1 cos 5LF x + TCN 1 sin _SCN+ TLN 1 cos 5LN

TLF 1 sin _iLF x + TCN 1 cos _CN + TLN1 sin 6LN = tan ON
(19)

10



Equation 19 can be rewritten as:

TLF 1 [cos _iLFx - sin 8LF x tan ON] + TLNl[COS 5LN - sin 8LN tan ON]

+ TCN 1[sin 5CN - cos 5CN tan ON] = 0 (20)

Equations 8, 18, and 20 can be solved for the three engine nozzle thrusts. If the lift-nozzle thrust

or the lift-fan thrust resulting from these equations is below zero or above its maximum allowable

value, then the equations for TTCMD and pitching moment are solved again, with the lift-fan or lift-

nozzle thrust set to the appropriate limit. If this solution exceeds another thrust limit, then the thrust

allocation is determined with TTCMD as the remaining constraint.

If the cruise-nozzle thrust calculated by equations 8, 18, and 20 is less than zero, or if the com-

manded net thrust deflection angle is greater than or equal to 45 deg, then the cruise-nozzle thrust is

set to zero, and the cruise-nozzle deflection angle is set to its maximum (downward) value. This is

the third propulsion control case for manual thrust control. The total thrust equation is essentially the

same as equation 8, although TLF 1 and TLN 1 are the unknowns:

TLF1 TLN1

KAUG rlLF + _ = TTCMD (21)

The lift-fan and lift-nozzle deflection angles are equal and determined by the pilot's commanded

thrust vector angle. Pitch moment arms are calculated for the lift fan and lift nozzle from equations 9

and 10. The relationship between the lift-fan thrust, the lift-nozzle thrust, and AM to balance the air-

craft in pitch is:

(TLF 1) LLF - (TLN1) LLN = - AM (22)

Equations 21 and 22 are solved simultaneously to find TLF 1 and TLN 1. If the calculated TLF 1 or

TLN 1 exceeds the nozzle limits, that thrust is limited accordingly and TTCMD is used as the constraint
in determining the thrust for other nozzle.

A different propulsion system control scheme is used for the APP/ATM submode and for the

TRC mode. In these cases, the SCAS determines the forces (AX and AZ) and the pitching moment

(AM) that the propulsion system must provide, and the propulsion system controller determines the

appropriate nozzle deflection angles and nozzle thrusts.

The logic used in determining the propulsion system commands in the APP/ATM and TRC

modes is similar to that used in the manual thrust modes. Once the lift fan is engaged, cruise-nozzle

and lift-fan thrust alone are used for flightpath and speed control, with the fan nozzle set at its maxi-

mum (rearward) deflection angle. Once the cruise nozzle reaches its maximum (downward)

deflection, lift-nozzle thrust is increased to satisfy the SCAS commands. The cruise-nozzle thrust is

decreased as the vertical thrust needed for flightpath control increases, until all of the engine thrust is

being directed to the lift fan and the lift nozzles. At this point, the lift fan and lift nozzles, which

have been held at their aft deflection limits, are free to deflect as needed; the engine thrust is allo-
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cated between these nozzles to satisfy powered lift and speed requirements in conjunction with the

system's commanded nozzle defection angles. This final propulsion system arrangement is used

throughout the low-speed semi-jetborne flight regime (typically < 120 knots IAS) and hover. Table 7

summarizes the thrust management solutions for these control modes.

For the first case with the lift fan engaged, the lift fan and lift nozzles are considered to be

deflected fully aft, and the lift-nozzle thrust is set to zero. The vertical thrust equation is:

- TLF 1 cos _iLFx + TGELF + FCN z = AZ (23)

With the flightpath loop closed, the propulsion control system must compensate for thrust variations

due to ground effects; the ground effect due to the lift-fan thrust is TGELF, and its value is deter-

mined from the actual lift-fan thrust that was commanded in the previous computer cycle. The thrust

components that will provide the commanded longitudinal force, AX, are given by:

TLF 1 sin 8LF x + FCN x = AX (24)

The moment arms of the lift fan and the lift nozzles are determined by equations 9 and 10, the

same method that was used in the manual thrust cases. With the pitching moment increment due to

ground effect represented as MGELF, the thrust contribution to pitching moment is:

TLF 1 LLF + MGELF- (FCNz)XCN + (FCNx)ZCN =- AM (25)

Using the SCAS values for desired longitudinal force, vertical force, and pitching moment,

equations 23-25 are solved simultaneously for TLF 1, FCN x and FCN z. The vector sum of FCN x and

FCN z determines the net cruise-nozzle thrust, TCN 1, and the ratio of FCN z to TCN 1 determines the
deflection angle of the cruise nozzle. If the lift-fan thrust calculated in this manner exceeds the

maximum allowable lift-fan thrust, the fan thrust is set to that maximum and FCN z is recalculated to

provide the pitching moment for aircraft trim.

Once the aircraft has slowed to the point that a significant portion of the lift-fan thrust is required

to maintain the commanded flightpath angle, the cruise nozzle reaches its maximum downward

deflection angle because the pitch trim of the aircraft must be maintained. Once this occurs, the
cruise-nozzle deflection is fixed at its maximum value and a different set of equations is used to

determine the lift-fan, lift-nozzle and cruise-nozzle thrust. The lift fan and lift nozzle are still

deflected fully aft. The vertical, longitudinal and pitching moment thrust equations that determine

TLF1, TCN 1 and TLN 1 are:

- TLF 1 cos 8LF x + TGELF - TLN 1 cos 5LN + TGELN - TCN 1 sin 8CN = AZ (26)

TLF 1 sin 5LF x + TLN 1 sin _LN + TCN1 cos _CN = zSX (27)

TLF1 LLF + MGELF - TLN 1LLN + MGELN + (TcN 1)LcN = _ AM (28)

12



If oneof the solutions to these three equations violates a thrust limit, then that nozzle's thrust is

set to its limit and the zXXand zkM equations are solved to find the remaining nozzle thrusts. If a sec-

ond thrust limit is encountered, the last thrust value is determined with the moment equation and the

other thrusts set to the appropriate limits. In this way, as propulsion limits are reached, the control of

the vertical axis is given up first, followed by control of the longitudinal axis. This axis priority pre-

vents thrust commands that could send the aircraft into a violent pitch excursion.

Equations 26-28 are used for thrust allocation until the cruise-nozzle thrust solution is less than

or equal to zero. At this point, new solutions involving not only nozzle thrusts but also lift-fan and

lift-nozzle deflection angles are used. In the original design of the propulsion system, the longitudi-

nal lift-fan deflection limit and the lift-nozzle deflection limits were not the same, and therefore it

could not be assumed that these nozzles would ever be at the same deflection angle. To solve for the

four unknowns with the two forces and one moment that the SCAS requires, the ratio of AX to AZ

was used to determine the deflection angle of the lift fan. The longitudinal deflection angle of the lift

fan is expressed as:

(29)

The lift-nozzle deflection angle, the tift-fan thrust and the lift-nozzle thrust are found by simultane-

ous solution of the following vertical, longitudinal and pitching moment thrust equations:

-TLF 1 cos 5LF x + TGELF + FLN z + TGELN = AZ (30)

TLF 1 sin 5LF x + FLN x = AX (31)

TLF 1 LLF + MGELF - (FLNz) XLN + MGELN + (FLNx)ZLN = -zXlVl (32)

The lift-nozzle thrust and deflection angle are determined by the thrust vector components FLN x

and FLN z. As in the case of equations 26-28, control over the longitudinal axis is relinquished first,

followed by control over the vertical axis, as nozzle deflection limits and nozzle thrust limits are

reached. This change in axis control priority reflects the low-speed flight conditions for which equa-

tions 30-32 are used, as the engine must provide most or all of the aircraft's lift.

Control Selector

A diagram of the control selector appears in figure 12. The control selector combines preliminary

propulsion system and aircraft attitude commands to generate control surface deflections, final

propulsion system nozzle deflections, reaction control system deflections, and final propulsion sys-

tem thrust commands. As the response of the control surface and engine nozzle actuators was

considered to be fast, the computational delay of the computer provided an adequate lag to duplicate

the response of these components. No explicit model of these actuators was created or used.
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Commands from the pitch SCAS drive the canard directly. The canard deflection limits are

30 deg trailing edge up and 10 deg trailing edge down. When the lift fan is in use, pitch commands

are multiplied by the gain KLF and added to the lift-fan thrust from the propulsion controller, TLF 1 ,

to produce the final lift-fan thrust command. The value of KLF depends upon the current lift-fan

thrust and the total core thrust, TTO T. If the core thrust currently diverted to the lift fan exceeds the

core engine thrust diverted to the remaining engine nozzles, then:

TILF KAUG
(33)

Otherwise, KLF is set to 1/30 of the core thrust that is currently being used to drive the lift fan.

The maximum lift-fan thrust is 17,400 lb KPLN, which is used to modify the thrust of each lift noz-

zle, is set equal to half of KLF; thus, pitch commands transfer the same amount of core engine thrust

between the lift nozzles and the lift fan. If the pitch RCS option has been selected, the switch IRCSP

is set equal to one and the pitch commands, multiplied by KPRCS (41.67 lb/deg of canard deflec-

tion), cause deflection of the pitch reaction control nozzles; the maximum pitch RCS thrust is

1,250 lb, directed either upward or downward depending on the sign of the pitch command.

Roll control is generated by the ailerons in wingborne flight and through thrust transfer between

the lift nozzles in jetbome flight, scaled per degree of aileron deflection. The deflection limits for the

ailerons are +30 deg. After taking into account lift-fan/lift-nozzle thrust transfer due to pitch com-

mands, the amount of thrust to be transferred differentially between the lift nozzles is determined.

KRLN is determined by the current value of lift-nozzle thrust and TTO T. If the thrust of both lift

nozzles exceeds the remaining core engine thrust, then:

KRLN = 1 (TTo T _ TLN) (34)

If the combined lift-nozzle thrust is less than the core engine thrust, then KRLN is set to 1/60 of

TLN. The roll commands are summed with the lift-nozzle thrust determined by the propulsion control

system to produce the fight and left lift-nozzle thrust commands. Each lift-nozzle thrust is limited to

12,000 lb. When the lift-nozzle deflection angle does not coincide with the vertical axis of the

aircraft, differential lift-nozzle thrust produces uncommanded yawing moments on the aircraft. To

counteract these moments, the system uses lateral deflection of the lift-fan nozzle. The interconnect

gain between differential lift-nozzle thrust and lateral lift-fan nozzle deflection is KRY1, which is

determined by:

KRY1 = (YLN/sin (SLN)

XLF J

(35)

A yaw RCS can be used instead of the lift-fan nozzle to produce yawing moments. If this option

is selected, thenKRY1 is multiplied by (XLF / XRCS). Usually the roll RCS is not employed;

however, when IRCSR is set equal to 1 to enable this system, the gain KRRCS is set equal to

83.33 lb/deg, with reaction control thrust limit of 2500 lb.
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Rudder deflection, differential li_nozzle deflection, and lateral lift-fan deflection all provide

yaw control for the aircraft. Commands from the yaw SCAS directly drive the rudder, which is lim-

ited to +30 deg of deflection. Five deg of differential lift-nozzle deflection are available for yaw axis

control in the powered lift regime. It follows that KYLN is 1/30 of 5 deg; the product of the yaw

command and KYLN is added to the lift-nozzle deflection determined by the propulsion control

system to produce the final left and right lift-nozzle deflection angles. The yaw command also pro-

duces lateral lift-fan deflection in the powered lift regime. KYLF is set to the same value as KYLN,

and after KYLF is multiplied by the yaw command, the differential lift-nozzle thrust interconnect

signal is added to it, resulting in the lateral deflection command for the lift-fan nozzle. The deflection

of this nozzle is limited to +15 deg, positive deflection producing positive side force. If the IRCSY

flag is set to one, the yaw RCS is used instead of lateral lift-fan nozzle deflection. KYRCS is set to

41.67 lb of RCS thrust per degree of yaw command. After the differential lift-nozzle thrust intercon-

nect is added to this signal, the yaw RCS command is limited to +1,250 lb.

Propulsion System

The propulsion system model developed for this experiment is a representation of a lift fan cou-

pled to a lift/cruise engine as shown in figure 2. The 2-dimensional convergent-divergent (2D-CD)

nozzle of the lift/cruise engine provides axial thrust in cruise and vectoring thrust during transition.

Thrust can be transferred from the 2D-CD nozzle to a pair of lift nozzles and to the lift fan to pro-

duce longitudinal and vertical thrust during transition and hover.

The lift/cruise engine responds to total thrust command, TTCMD, which is calculated as a sum of

the individual nozzle thrust commands that are generated from the control selector. The closed loop

core thrust dynamic response is model by a second order transfer function with respect to a refer-

enced core engine state, TTRef. TTRef is defined as the trim state of the core thrust response and

is reset to the total thrust response, TTO T , whenever the engine reaches a steady state. An incremen

tal thrust command, ATTcMD, is calculated from the total thrust command and the referenced thrust
as shown in equation 37. This incremental thrust command is then fed through a second order

transfer function which represents the closed-loop core engine dynamic characteristics, where the

damping ratio is set to 0.707 and the bandwidth, O)core. A rate limit, "_Tmax ' and a lift/cruise

engine thrust magnitude limit, TTmax, are included in the second order transfer function model to

represent physical thermal limits of the propulsion system. Each individual nozzle's referenced

thrust and the response due to perturbed lift/cruise engine are distributed proportionally by the ratio

of each nozzle thrust command over the total thrust command, equations 41 and 42.

TTCMD = TCNcM D + TLLNcM D + TRLNcM D + TLFcM D / KAU G

where KAU G is the lift-fan augmentation ratio

ATTcMD = TTCMD - TTRef

(36)

(37)
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ATT = (s2

where i = CN, LLN, RLN, and LF

0)c°re2 )ATTcMD (38)
+ 2_0)core s + 0)core 2

TTO T = TTRef + AT T (39)

TiCM/)

Ri - TTCMD (40)

TiRef = TTRef R i (41)

ATi CORE = AT T Ri

To model the thrust transfer rate limit effect, the thrust transfer command for each nozzle is

defined as,

ATi.IF = TiCM D - TiRef - ATTcMD Ri

• °

The thrust transfer rate for each nozzle, TiTV is limited to TTFmax.

The thrust response for each nozzle is calculated as shown in equation 44, in which rl is the

thrust recovery factor for each specified nozzle.

TCN = ( TCNRe f + ATCNcoRE + ATCNTF ) x TICN

TLL N = ( TLLNRef + ATLLNcoR E + ATLLNT F ) X TILN

TRI2, l = ( TRLNRef + ATRI3qcoRE + ATRLNT z ) X TILN

TLF0 = TLFRef + ATLFcoRE + ATLFTe

(42)

(43)

(44)

For this experiment, a generic energy transfer between the lift/cruise engine and the lift fan is assum-

ed. Dynamically, the lift-fan thrust at the lift-fan nozzle exit, TLF, due to TLF0 from equation 44 is

dependent on lift-fan rotational speed and inlet guide vane setting. The dynamic response is modeled

by a first order transfer function with a time constant of reEF, plus a first order washout transfer

function, as shown in figure 13. A rate limit, "i'LFmax, and a maximum lift-fan thrust limit, TLFmax,

are included to represent physical constraints of the lift-fan dynamics. The upper and lower IGV

authorities are defined as shown in equation 45, in which KIGVu and KIGVL are in percent of lift-fan
inertia thrust.

16



TIGVU= KIGVuTLFs, TIGVL = KIGVL TLF s (45)

The total li_fan thrust, TLF, is then calculated from the fan inertia thrust and IGV thrust as shown in

equation 46, where rlLF is a generic thermal/mechanical efficiency constant.

TLF = ( TLF s + TLF F ) x rlLF (46)

The mass flow rates of the primary inlets and auxiliary inlets are functions of the total thrust,

maximum lift/cruise engine thrust, and respective maximum mass flow rate as shown in equations 47

and 48. A maximum mass flow rate of 11.2 slug/sec was used in each case. Primary inlets are

opened in CTO and APP, and are closed in TRC. Auxiliary inlets are only opened in TRC to reduce

the amount of hot gas reingestion. The mass flow rate of the lift-fan inlet is modeled as a function of

the lift-fan thrust, maximum lift-fan thrust, and the maximum lift-fan mass flow rate (eq. 49) which

was set to 14.0 slug/sec.

Iilpi = TT_OT 1 rilPima x

ITMAX)
(47)

( TTOT llilAima xrnAi = )
(48)

N

rnLFI _.TLFMAX _
(49)

The resulting propulsion forces and moments are resolved into the aircraft body axes from each indi-

vidual nozzle thrust and deflection, inlets, and reaction control system (RCS) when it is activated.
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Axial force:

where

Side force:

where

Normal force:

where

FEX = FCN x + FLLNx + FRLNx + FLF x + Fpi x + FAI x +FLH x

FCN x = TCN cos _SCN

FLLNx = TLL N sin _iLN

FRLN x = TRLN sin _iLN

FLF x = TLF sin 8LF x cos _SLFy

FHx = -riaH UB

FAI x = -riaAi UB

FLFI x = mLFI ( -UB - QB zpI )

FEy = FLFy+ Fpiy+ FAIy+ FLFIy + FRCSy

FLFy = TLF sin 8LFy '

FpIx = nan ( -VB + PB zH - RB xpI )

FAI x = fnAI ( -VB + PB ZAI - RB XAI )

FI.FI x = fnLFl ( -VB + PB ZLFI - RB XLFI )

FEZ = FCN z + FLLN z + FRLNz + FLFz + FpI z + FAI z + FLHz

FCN z = TCN sin t3CN

FLLNz = TLL N cos 5LN

FRLNz = TRLN cos t_LN

FLF z = TLF cos 5LF cos 5LFy

FHz = -riaH WB

FAI z = -rhAI WB

FLFIz = riaLFI (-WB + QB xpi )
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Rolling moment:

Pitching moment:

Yawing moment:

TEL =- FLLN z YLLN + FRLN z YRLN + FLFYz ZLF

+ FRCSY z ZRCS + FRCSy ZRCS FRCS z YRCS

- Fpiy zpi - FAIy ZAI - FLNy ZLFI

TEM = - FCN z xCN - FLLN z XLLN.+ FRLN z XRLN - FLF z XLF

+ FCN x ZCN + FLLNx ZLLN + FRLNx ZRLN - FLFx ZLF

- Fpi z xpI - FAI z XAI - FLFI z XLFI

+ Fpi x zpI - FAI x ZAI - FLFI x ZLFI

TEN = FLLNx YLLN- FRLN x YRLN + FLFYz ZLF

+ FRCSY z XRCS + FLFy XLF

+ Fply xp! + FAIy XAI + FLFIy XLFI

(53)

(54)

(55)

Head Up Display

A head-up display (HUD), that has been employed by NASA in several previous V/STOL simu-

lations, provided the primary flight display for this experiment. The display is described here in gen-

eral terms. The reader should consult reference 7 for a complete description of symbology and drive

laws.

Separate presentations were adopted for transition and hover. For the transition phase, shown in

detail in figure 14, the display was a flightpath centered, pursuit presentation that enhanced the

external visual cues, centered them on the aircraft's flightpath, and presented the pilot with a pursuit

tracking task for following the intended transition and approach guidance to a final hover point.

Course and glideslope guidance was provided in the form of a lead (ghost) aircraft that followed the

desired flight profile. The pilot's task was to track the ghost aircraft with the flightpath symbol. As

indicated in reference 7, the flightpath symbol was quickened to compensate for lags in the airframe

and propulsion system response. For the MTV or FTM control modes, where thrust was controlled

manually using the throttle, the flightpath compensation included lagged pitch rate and washed out

throttle commands in combination with the true flightpath in accord with the following equation:



Jt.S+GwJ

and _w -.ZWhove r + Vaf Z'w ZWhover = g(l_dW)

Z'w = 1.58 pgS/W K6T = A_3T sin 0j / _w

The pitch rate term was blended out for speeds below 55 knots and true airspeed was frozen at

100 ft/sec for speeds less than 100 ft/sec. Gains and washout frequencies were Kq = 1, A 5_ = 0.3. For
• • T

ATM, the flightpath was complemented with its commanded value in the short term according to

s tan_l (1:1/ VT )
Tq = tan-1 _-_-- +

(57)

The washout frequency coy was 1 rad/sec. True lateral flightpath was represented by the flightpath

symbol. Deceleration guidance was presented by an acceleration error ribbon on the right side of the

flightpath symbol which the pilot nulled to follow the deceleration schedule. Situation information

that accompanied the flightpath and ghost aircraft symbology included aircraft attitude, speed, alti-

tude, engine rpm, thrust Vector angle, longitudinal acceleration, heading, and distance to the hover

point.

During the latter stages of the deceleration as the aircraft approaches the intended point of hover,

selective changes are made to the approach display to provide guidance for the hover point capture.

Specifically, the longitudinal velocity vector, predicted longitudinal velocity, and station keeping

cross appear referenced to the vertical velocity diamond symbol as shown in figure 15. The drive law

for predicted longitudinal velocity is shown below in the discussion of the hover display (eq. 58).

The pilot controls the predicted velocity toward the station keeping cross position and adjusts veloc-

ity to bring the cross to rest at the reference hover point indicated by the cross being adjacent to the

vertical velocity diamond. Once the aircraft is stabilized in this condition, the pilot is ready to per-

form the vertical landing.

For the vertical landing, including recovery to the ship, the HUD format superimposed vertical

and plan views and provided command and situation information in a pursuit tracking presentation

(fig. 16). In the horizontal situation, the aircraft velocity vector was represented by a line emanating

from the aircraft symbol. A pad symbol represented the landing area. Horizontal and vertical velocity

predictor symbols, whose displacement and orientation from the aircraft symbol indicated magnitude

and direction provided the pilot lead information for hover maneuvering. Predicted horizontal and

vertical velocity presentations were compensated for aircraft and propulsion system lags as they

were for transition. In this case, for MTV mode, true velocities were complemented with transla-

tional accelerations and washed out control commands according to the relationship:
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T9 s - K0c0c (58)Vxc= Vx+ -gs+I/T 6 s s+l/T 2

where CYu= X Uhover + Vaf X' u XUhove r = g(riae/W) X' u = CD aero p gS/W

T_ = 1.11 T6 = 10 Koc = 3.45 T2 = 10

For TRC mode, the commanded horizontal velocities were displayed directly. The vertical situa-

tion was displayed by a diamond referenced to the left leg of the aircraft symbol whose displace-

ment, t w , was proportional to complemented vertical speed. For MTV mode vertical velocity isc
complemented with vertical acceleration so that

t.: wrh sL T6s+I L K6TSTT6 +_w
(59)

where Kw = 0.2 and the other terms have the same values as for the flightpath symbol drive. When

TRC is engaged vertical velocity was complemented with washed out vertical velocity command to

provide the command

twc: wEh+hC/s1] (6O)

and my = 1. A horizontal bar indicated the altitude remaining to touchdown. Attitude, air velocity,

engine rpm, thrust vector angle, heading, vertical velocity limits, and wind direction are provided as
situation information.

CONCLUSIONS

A simulation model of an integrated _ght/propulsion control system, propulsion system, and

head-up display has been developed for an advanced, short takeoff, vertical landing lift-fan fighter

aircraft. These models, combined with a model of the aircraft' s aerodynamic characteristics have

been employed in piloted evaluations of takeoff, transition, hover, and landing characteristics of this

class of aircraft. The flight/propulsion control system includes modes for several response types

which are coupled to the aircraft's aerodynamic and propulsion system effectors through a control

selector tailored to the lift-fan propulsion system. Design of the system has drawn on experience

gained from simulation of earlier STOVL configurations, including the Mixed Flow Vectored Thrust

and Augmentor Ejector concepts as well as from the VSTOL Systems Research Aircraft, which is a

modification of the YAV-8B Harrier prototype. Propulsion system components modeled include a

remote lift-fan and a lift/cruise engine. Their static performance and dynamic response are repre-

sented by the model. A separate report describes the subsonic, power-off aerodynamics and jet

induced aerodynamics in hover and forward flight, including ground effects.

J_
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Table 1.Aircraft geometry

Wing

Canard

Vertical tail (each)

Overalllength
Overallheight

Area

Span

Mean aerodynamic chord

Aspect ratio

Leading edge sweep

Trailing edge sweep

Airfoil

Area

Span

Mean aerodynamic chord

Aspect ratio

Leading edge sweep

Trailing edge sweep

Airfoil

Area

Span

Mean aerodynamic chord

Aspect ratio

Leading edge sweep

Trailing edge sweep

Airfoil

55.4 ft

14.16 ft

523.3 ft 2

36.17 ft

18.42 ft

2.50

40.0 deg

30.0 deg

NACA 64A005

243.1 ft 2

24.65 ft

12.55 ft

2.50

40.0 deg

30.0 deg

NACA 64A004.5

39.0 ft 2

6.98 ft

7.11ft

1.25

40.0 deg

30.0 deg

NACA 64A004.5

Table 2. Mass properties

Weight

x cg location

y cg location

z cg location

Pitch moment of inertia

Roll moment of inertia

Yaw moment of inertia

Product of inertia

30,000 lb
373.3 in.

0.0 in.

96.0 in.

91,200 slug-ft 2

14,300 slug-ft 2

101,000 slug-ft 2

0 slug-ft 2
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Table3. Flight controlmodes
Controlaxis Controlmodedesignations(applicableflight phases)

CTO(wingbome MTV (transition,hover) APP:ATM
flight) APP:FTM (transition) (transition,hover)

TRC
(hover)

Pitch/roll

Yaw

Vertical

Longitudinal

Lateral

Rate command -

attitude hold

Sideslip command

Aerodynamic lift

Thrust magnitude

Rate command - attitude

hold, blend to attitude

command

Sideslip command, blend

to yaw rate command

Thrust magnitude

Thrust vector angle

(MTV), acceleration

command - velocity

hold (APP)

Rate command -

attitude hold,

blend to attitude

command

Sideslip command,

blend to yaw rate
command

Flightpath command,

blend to velocity
command

Acceleration

command -

velocity hold

Yaw rate

command

Velocity
command

Velocity
command

Velocity
command
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Table4. Controlmodegains

Attitudecontrol

Pitch

Control limits = _+5.65in.
Forcegradient= 1.0lb/in.
Breakout= 0.15 in.
K111= 0.28rad/sec/in.
K222= 0.3rad/in.
K0 = 4.0 rad/rad

K0 = 4.0 sec

K300 = 20.0/(1 + 0.0047_1) deg/rad

7:9 = 0.05 sec

Yaw - transition

Control limits = +2.12 in.

Force gradient = 14.0 lb/in.

Breakout = 0.1 in.

K10 = 0.3 tad/in.

K_ = 2.8 sec

KI3 = 40 rad/rad

7:[3= 0.25 sec

Roll

Control limits = +4.2 in.

Force gradient = 0.7 lb/in.

Breakout = 0.05 in.

K1 = 1.2 rad/in.

K333 = 1.6 rad/sec/in.

K¢ = 9.0 rad/rad

KS = 6.0 sec

K3 = 15.0 (100/KRLN)/(1 + 0.029q) deg/rad

7:8 = 0.05 sec

Yaw - Hover

Same

Same

Same

K10H = 2.3

K_= 4.0 sec

K30 = 40.0 deg/rad

KB = 0 (V < 40 knots); 1.0 (V > 50 knots)

7:7= 0.05 sec

Velocity control

Longitudinal velocity

Control limits

Stick = +2.25 in.

Thumbwheel = +100 deg

Breakout

Stick = 0.225 in.

Thumbwheel = 5.5 deg

K2U = 0.1

KVI = 20.0 sec -1

KV = 14.0 flYsec2/in.

KU = 0.69 sec -1

K3u = 1.0

7:U = 0.35 sec

Vertical velocity

K 7 = 0.00545 rad/deg

Kw = 0.71 sec -1

K3W = 0.14

7:CNT = 0.1 sec

Lateral velocity

K6 = 10.0 ft/sec/deg

PR = 5.25

K_2 = 0.58 rad/ft/sec

K9 = 0.285 rad/rad

25 ;_



Table 5. Maximum and minimum throttle control commands and control sensitivity slopes

_cmd Maximum Minimum Max slope u (1/Sth) Min slope u (1/Sth)

1/% 1/%

Thrust magnitude, % 100 3 1.0 0.5

Flightpath angle, ?, 10 -20 0.3 0.287

deg

Vertical velocity, la, 20 -40 0.6 0.5

ft/sec

Table 6. Propulsion management summary for MTV and APP:FTM modes

Case TCN 1 _CN TLF1 8LFx (=SLN) TLN1 Equations in

text

1. Lift fan

engaged

and O N

< 45 deg

2. Case 1

8CN >

max.

3. Case 2

TCN 1 <

0 or ON

> 45 deg

Unknown Unknown Unknown Maximum 0 8, 13, 15, 16

Unknown Maximum Unknown Maximum Unknown 8, 18, 20

0 Maximum Unknown ON Unknown 21, 22
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Table7. Propulsionmanagementsummaryfor APP:ATM andTRCmodes

Case TCN1 [iCN TLF1 5LFx TLN1 [iLN Equations

in text

1. Lift fan

engaged

2. Case 1

SEN >

max.

3. Case 2

TCN 1 <

0

Unknown Unknown Unknown Maximum 0 Maximum

Unknown Maximum Unknown Maximum Unknown Maximum

0 Maximum Unknown Unknown Unknown Unknown

23,24,25

26, 27, 28

29,30,31,

32
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Figure 1. Views of the ASTOVL Lift Fan Aircraft.
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Lift Fan
Nozzle

Lift Fan

I I

I I
I I

Figure 2. Propulsion system configuration.

Sensors

Pilot

commands
Regulator = Control

v I selector

I

Aero

controls LI

Propulsion_ I

controls

Aircraft

Figure 3. Flight-and-propulsion control system structure.

4'

29



Wingbome/Jetbome WOW

Airspeed: > ]250 kts

Lift Fan Off

Allowable
Mode

Switching

Lift Fan On

CTO

< 250 kts, > 150 kts

CTO

11\\
MTV _ APP

< 150 kts, > 60 kts

CTO

MTV _ APP

< 60 kts

CTO

Any
Ai_peed

CTO

I
MTV

• When airbome/jetbome, the pilot cannot manually disengage the lift
fan until the total thrust vector is deflected fully aft

• Disengagement of the nozzle lever clutch in APP or TRC mode causes
reversion to the MTV mode

° Switching between FTM and ATM submodes within APP not shown
as this change does not depend on airspeed

Figure 4. Control mode selection logic.
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Figure 5. Pitch stabilization and command augmentation system.
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Figure 6. Roll stabilization and command augmentation system.
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Figure 7. Yaw stabilization and command augmentation system.
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Figure 8. Vertical velocity stabilization and command augmentation system.
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Figure 9. Long#udinal velocity stabilization and command augmentation system.



(5 cmd) max

( 6 ) @mode

switch

(5 cmd) ref

(5 cmd) min

0

Slope u
I

I
I

Slope L [
I I

(_th) ref (_th) @mode 100
switch

Throttle Control Input in % Travel

Figure 10. Throttle control/command scale.
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-.,, xCN

zCN

Lift-Cruise Engine

--- XLN

XLF

Lift Fan

ZLN CG ZL /

k

Body-Fixed Z Axis

Body-Fixed
X Axis

Note: Distances measured forward of the center of gravity are considered positive.
Distances mesured below the center of gravity are considered positive.

xCN = - 19.72 fl 8CN range = +20 °, -20 °

zCN = 0 ft _LF range = +45 °, -10 °

XLF = 11.70 ft 8LN range = +45 °, -10 °

ZLF = 1.93 ft

XLN = -8.93 ft

ZLN = 1.41 fl

Figure 11. Propulsion system dimensions and sign conventions.
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Figure 12. Control selector.
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Figure 13. Lift fan inertia and IGV modeL
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10
I

,10
(pitch ladder)

100 0 (altitude in feet)

-1 80 (dirnbrate
in ft/min)
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Figure 14. Head-up display approach mode.
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Figure 15. Head-up display approach mode for station keeping point capture.
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Figure 16. Head-up display hover mode.
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